

LayeredConfig

LayeredConfig compiles configuration from files, environment
variables, command line arguments, hard-coded default values, or other
backends, and makes it available to your code in a simple way.

	Introduction

	Usage
	Precedence

	Config sources

	Typing

	Subsections

	Cascading

	Modification and persistance

	Using LayeredConfig with argparse

	Embedding configuration in python files

	API reference

	Available sources
	Hardcoded defaults

	Environment variables

	Command-line parameters

	INI files

	JSON files

	YAML files

	PList files

	Python files

	etcd stores

	Implementing custom ConfigSource classes

Introduction

LayeredConfig compiles configuration from files, environment
variables, command line arguments, hard-coded default values, or other
backends, and makes it available to your code in a simple way:

from layeredconfig import (LayeredConfig, Defaults, INIFile,
 Environment, Commandline)

This represents four different way of specifying the value of the
configuration option "hello":

1. hard-coded defaults
defaults = {"hello": "is it me you're looking for?"}

2. INI configuration file
with open("myapp.ini", "w") as fp:
 fp.write("""
[__root__]
hello = kitty
""")

3. enironment variables
import os
os.environ['MYAPP_HELLO'] = 'goodbye'

4.command-line arguments
import sys
sys.argv = ['./myapp.py', '--hello=world']

Create a config object that gets settings from these four
sources.
config = LayeredConfig(Defaults(defaults),
 INIFile("myapp.ini"),
 Environment(prefix="MYAPP_"),
 Commandline())

Prints "Hello world!", i.e the value provided by command-line
arguments. Latter sources take precedence over earlier sources.
print("Hello %s!" % config.hello)

	A flexible system makes it possible to specify the sources of
configuration information, including which source takes
precedence. Implementations of many common sources are included and
there is a API for writing new ones.

	Included configuration sources for INI files, YAML files, JSON file,
PList files, etcd stores (read-write), Python source files,
hard-coded defaults, command line options, environment variables
(read-only).

	Configuration can include subsections
(ie. config.downloading.refresh) and if a
subsection does not contain a requested setting, it can optionally
be fetched from the main configuration (if config.module.retry
is missing, config.retry can be used instead).

	Configuration settings can be changed by your code (i.e. to update a
“lastmodified” setting or similar), and changes can be persisted
(saved) to the backend of your choice.

	Configuration settings are typed (ie. if a setting should contain a
date, it’s made available to your code as a
datetime.date object, not a str). If
settings are fetched from backends that do not themselves provide
typed data (ie. environment variables, which by themselves are
strings only), a system for type coercion makes it possible to
specify how data should be converted.

Usage

To use LayeredConfig in a project:

from __future__ import print_function
from layeredconfig import LayeredConfig

Also, import any Configuration sources you want to use. It’s common to
have one source for code defaults, one configuration file (INI file in
this example), one using environment variables as source, and one
using command lines:

from layeredconfig import Defaults, INIFile, Environment, Commandline

Each configuration source must be initialized in some way. The
Defaults source takes a dict [https://docs.python.org/3/library/stdtypes.html#dict],
possibly nested:

from datetime import date, datetime
mydefaults = Defaults({'home': '/tmp/myapp',
 'name': 'MyApp',
 'dostuff': False,
 'times': 4,
 'duedate': date(2014, 10, 30),
 'things': ['Huey', 'Dewey', 'Louie'],
 'submodule': {
 'retry': False,
 'lastrun': datetime(2014, 10, 30, 16, 40, 22)
 }
 })

A configuration source such as INIFile
takes the name of a file. In this example, we use a INI-style file.

myinifile = INIFile("myapp.ini")

Note

LayeredConfig uses the configparser [https://docs.python.org/3/library/configparser.html#module-configparser] module, which
requires that each setting is placed within a section. By default,
top-level settings are placed within the [__root__] section.

In this example, we assume that there is a file called
myapp.ini within the current directory with the following
contents:

[__root__]
home = /usr/home/staffan/.myapp

[submodule]
retry = True
lastrun = 2014-10-31 16:40:22

The Environment source uses environment
variables as settings. Since the entire environment is not suitable to
use as a configuration, use of this source requires that a prefix
is given. Only environment variables starting with this prefix are
used. Furthermore, since the name of environment variable typically
uses uppercase, they are by default lowercased by this source. This
means that, in this example, the value of the environmentvariable
MYAPP_HOME will be available as the configuration setting
home.

env = {'MYAPP_HOME': 'C:\\Progra~1\\MyApp',
 'MYAPP_SUBMODULE_RETRY': 'True'}
myenv = Environment(env, prefix="MYAPP_")

Finally, the Commandline processes the
contents of sys.argv and uses any parameter starting with -- as a
setting, such as --home=/Users/staffan/Library/MyApp. Arguments
that do not match this (such as positional arguments or short options
like -f) are made available through the rest property, to be
used with eg. argparse [https://docs.python.org/3/library/argparse.html#module-argparse].

mycmdline = Commandline(['-f', '--home=/opt/myapp', '--times=2', '--dostuff'])
rest = mycmdline.rest

Now that we have our config sources all set up, we can create the
actual configuration object:

cfg = LayeredConfig(mydefaults,
 myinifile,
 myenv,
 mycmdline)

And we use the attributes on the config object to access the settings:

print("%s starting, home in %s" % (cfg.name, cfg.home))

Precedence

Since several sources may contain a setting, A simple precedence
system determines which setting is actually used. In the above
example, the printed string is "MyApp starting, home in
/opt/myapp". This is because while name was specified only by the
mydefaults source, home was specified by source with higher
predecence (mycmdline). The order of sources passed to
LayeredConfig determines predecence, with the last source having the
highest predecence.

Config sources

Apart from the sources used above, there are classes for settings
stored in JSON files, YAML files and PList files, as well as etcd
stores [https://coreos.com/using-coreos/etcd]. Each source can to
varying extent be configured with different parameters. See
Available sources for further details.

You can also use a single source class multiple times, for example to have
one system-wide config file together with a user config file, where
settings in the latter override the former.

It’s possible to write your own
ConfigSource-based class to read (and
possibly write) from any concievable kind of source.

Typing

The values retrieved can have many different types – not just strings.

delay = date.today() - cfg.duedate # date
if cfg.dostuff: # bool
 for i in range(cfg.times): # int
 print(", ".join(cfg.things)) # list

If a particular source doesn’t contain intrinsic typing information,
other sources can be used to find out what type a particular setting
should be. LayeredConfig converts the data automatically.

Note

strings are always str [https://docs.python.org/3/library/stdtypes.html#str] objects, (unicode in python
2). They are never bytes [https://docs.python.org/3/library/stdtypes.html#bytes] objects (str in python 2)

Subsections

It’s possible to divide up settings and group them in subsections.

subcfg = cfg.submodule
if subcfg.retry:
 print(subcfg.lastrun.isoformat())

Cascading

If a particular setting is not available in a subsection,
LayeredConfig can optionally look for the same setting in parent
sections if the cascade option is set.

cfg = LayeredConfig(mydefaults, myinifile, myenv, mycmdline, cascade=True)
subcfg = cfg.submodule
print(subcfg.home) # prints '/opt/myapp', from Commandline source root section

Modification and persistance

It’s possible to change a setting in a config object. It’s also
possible to write out the changed settings to a config source
(ie. configuration files) by calling
write()

subcfg.lastrun = datetime.now()
LayeredConfig.write(cfg)

Using LayeredConfig with argparse

The standard module for handling command line arguments in python is
argparse [https://docs.python.org/3/library/argparse.html#module-argparse]. This module handles much of the same things as
LayeredConfig does (eg. defining the default values and types of
arguments and making them easily accessed), but it isn’t able to read
parameter values from other sources such as INI files or environment
variables.

LayeredConfig integrates with argparse through the
Commandline config source. If you have
existing code to set up an argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser] object,
you can re-use that with LayeredConfig.

import sys
import argparse
from datetime import date, datetime
from layeredconfig import LayeredConfig, Defaults, INIFile, Commandline, UNIT_SEP

After this setup, you might want to create any number of config
sources. In this example we use a Defaults
object, mostly used for specifying the type of different arguments.

defaults = Defaults({'home': str,
 'name': 'MyApp',
 'dostuff': bool,
 'times': int,
 'duedate': date,
 'things': list,
 'submodule': {'retry': bool,
 'lastrun': datetime
 }
 })

And also an INIFile that is used to store
actual values for most parameters.

with open("myapp.ini", "w") as fp:
 fp.write("""[__root__]
home = /tmp/myapp
dostuff = False
times = 4
duedate = 2014-10-30
things = Huey, Dewey, Louie

[submodule]
retry = False
lastrun = 2014-10-30 16:40:22
""")
inifile = INIFile("myapp.ini")

Next up, we create an instance of argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]
in the normal way. Note that in this example, we specify the types of
some of the parameters, since this is representative of how
ArgumentParser normally is used. But you can also omit this
information (the action and type parameters to
add_argument() [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument]) as long as you
provide information through a Defaults config source object.

Note: we don’t add arguments for --duedate or --submodule-lastrun to
show that LayeredConfig can define these arguments based on other
sources. Also note that defaults values are automatically fetched from
either defaults or inifile.

parser = argparse.ArgumentParser("This is a simple program")
parser.add_argument("--home", help="The home directory of the app")
parser.add_argument('--dostuff', action="store_true", help="Do some work")
parser.add_argument("-t", "--times", type=int, help="Number of times to do it")
parser.add_argument('--things', action="append", help="Extra things to crunch")
parser.add_argument('--retry', action="store_true", help="Try again")
parser.add_argument("file", metavar="FILE", help="The filename to process")

Now, instead of calling
parse_args() [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.parse_args], you can pass this
initialized parser object as a named parameter when creating a
Commandline source, and use this to create
a LayeredConfig object.

Note that you can use short parameters if you want, as long as you
define long parameters (that map to your other parameter names) as
well

sys.argv = ['./myapp.py', '--home=/opt/myapp', '-t=2', '--dostuff', 'file.txt']
cfg = LayeredConfig(defaults,
 inifile,
 Commandline(parser=parser))
print("Starting %s in %s for %r times (doing work: %s)" % (cfg.name,
 cfg.home,
 cfg.times,
 cfg.dostuff))
should print "Starting MyApp in /opt/myapp for 2 times (doing work: True)"

The standard feature of argparse to create a help text if the -h
parameter is given still exists. Note that it will also display
parameters such as –name`, which was defined in the
Defaults object, not in the parser object.

sys.argv = ['./myapp.py', '-h']
cfg = LayeredConfig(defaults,
 inifile,
 Commandline(parser=parser))

Warning

Using a bespoke argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser] together with
subsections is a bit more complicated. If you want to do that, you
will need to setup each argument to the ArgumenParser object by
explicitly naming the internal name for the attribute as specifid
by the dest parameter, and separating the subsections with the
special layeredconfig.UNIT_SEP delimiter, eg:

parser.add_argument("--submodule-retry", help="Whether to retry the submodule",
 dest="submodule"+UNIT_SEP+"retry")

Embedding configuration in python files

In many cases, it’s desirable to let the end user specify
configuration in the same langauge as the rest of the system (Django [https://www.djangoproject.com/] and Sphinx [http://sphinx-doc.org/] are examples of frameworks that works this
way). LayeredConfig provides the source PyFile
that lets the user create configuration using normal python code.

If you create a file like conf.py with the following contents:

from __future__ import unicode_literals

import os
import multiprocessing
from datetime import datetime, date

home = os.getcwd()
name = 'My App'
dostuff = name.istitle()
duedate = date.today()
submodule = Subsection()
submodule.retry = True

Note

The class Subsection will automatically be imported into
conf.py and is used to create new subsections. Parameters in
subsections are created as normal attributes on the subsection
object.

And load it, together with a Defaults
source like in previous examples:

from layeredconfig import LayeredConfig, PyFile, Defaults
from datetime import date, datetime

conf = LayeredConfig(Defaults({'home': '/tmp/myapp',
 'name': 'MyApp',
 'dostuff': False,
 'times': 4,
 'duedate': date(2014, 10, 30),
 'things': ['Huey', 'Dewey', 'Louie'],
 'submodule': {
 'retry': False,
 'lastrun': datetime(2014, 10, 30, 16, 40, 22)
 }
 }),
 PyFile("conf.py"))

The configuration object will act the same as in previous examples,
ie. values that are specified in conf.py be used, and values
specified in the Defaults object only used if conf.py doesn’t
specify them.

Note

The PyFile source is read-only, so it
should not be used when it’s desirable to be able to save changed
configuration parameters to a file. Use
PyFile or one of the other *File
sources in these cases.

It’s also possible to keep system defaults in a separate python file,
load these with one PyFile instance, and
then let the user override parts using a separate
PyFile instance. Functionally, this is not
very different than loading system defaults using a
Defaults source, but it might be preferable
in some cases. As an example, if the file defaults.py contains the
following code:

from datetime import date, datetime

home = '/tmp/myapp'
name = 'MyApp'
dostuff = False
times = 4
duedate = date(2014, 10, 30),
things = ['Huey', 'Dewey', 'Louie']
submodule = Subsection()
submodule.retry = False
submodule.lastrun = datetime(2014, 10, 30, 16, 40, 22)

And a LayeredConfig object is initialized in the following way, then
the resulting configuration object works identically to the above:

conf = LayeredConfig(PyFile("defaults.py"),
 PyFile("conf.py"))

API reference

	
class layeredconfig.LayeredConfig(*sources, **kwargs)

	Creates a config object from one or more sources and provides
unified access to a nested set of configuration
parameters. The source of these parameters a config file
(using .ini-file style syntax), command line parameters, and
default settings embedded in code. Command line parameters
override configuration file parameters, which in turn override
default settings in code (hence Layered Config).

Configuration parameters are accessed as regular object
attributes, not dict-style key/value pairs. Configuration
parameter names should therefore be regular python
identifiers, and preferrably avoid upper-case and “_” as well
(i.e. only consist of the characters a-z and 0-9)

Configuration parameter values can be typed (strings,
integers, booleans, dates, lists…). Even though some sources
lack typing information (eg in INI files, command-line
parameters and enviroment variables, everything is a string),
LayeredConfig will attempt to find typing information in other
sources and convert data.

	Parameters

	
	*sources – Initialized ConfigSource-derived objects

	cascade (bool [https://docs.python.org/3/library/functions.html#bool]) – If an attempt to get a non-existing parameter
on a sub (nested) configuration object should
attempt to get the parameter on the parent
config object. False by default,

	writable (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether configuration values should be mutable.
True by default. This does not affect
set().

	
static write(config)

	Commits any pending modifications, ie save a configuration file if
it has been marked “dirty” as a result of an normal
assignment. The modifications are written to the first
writable source in this config object.

Note

This is a static method, ie not a method on any object
instance. This is because all attribute access on a
LayeredConfig object is meant to retrieve configuration
settings.

	Parameters

	config (layeredconfig.LayeredConfig) – The configuration object to save

	
static set(config, key, value, sourceid='defaults')

	Sets a value in this config object without marking any source
dirty, and with exact control of exactly where to set the
value. This is mostly useful for low-level trickery with
config objects.

	Parameters

	
	config – The configuration object to set values on

	key – The parameter name

	value – The new value

	sourceid – The identifier for the underlying source that the
value should be set on.

	
static get(config, key, default=None)

	Gets a value from the config object, or return a default value if
the parameter does not exist, like dict.get() [https://docs.python.org/3/library/stdtypes.html#dict.get] does.

	
static dump(config)

	Returns the entire content of the config object in a way that can
be easily examined, compared or dumped to a string or file.

	Parameters

	config – The configuration object to dump

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
static datetimeconvert(value)

	Convert the string value to a datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]
object. value is assumed to be on the form “YYYY-MM-DD
HH:MM:SS” (optionally ending with fractions of a second).

	
static dateconvert(value)

	Convert the string value to a date [https://docs.python.org/3/library/datetime.html#datetime.date]
object. value is assumed to be on the form “YYYY-MM-DD”.

	
static boolconvert(value)

	Convert the string value to a boolean. "True" is converted to
True and "False" is converted to False.

Note

If value is neither “True” nor “False”, it’s returned unchanged.

Available sources

Hardcoded defaults

	
class layeredconfig.Defaults(defaults=None, **kwargs)

	This source is initialized with a dict.

	Parameters

	defaults (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dict with configuration keys and values. If
any values are dicts, these are turned into
nested config objects.

Environment variables

	
class layeredconfig.Environment(environ=None, prefix=None, lower=True, sectionsep='_', **kwargs)

	Loads settings from environment variables. If prefix is set to
MYAPP_, the value of the environment variable MYAPP_HOME
will be available as the configuration setting home.

	Parameters

	
	environ (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables, in dict form like
os.environ [https://docs.python.org/3/library/os.html#os.environ]. If not provided, uses
the real os.environ [https://docs.python.org/3/library/os.html#os.environ].

	prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – Since the entire environment is not suitable to use
as a configuration, only variables starting with this
prefix are used.

	lower (True) – If true, lowercase the name of environment
variables (since these typically uses uppercase)

	sectionsep (str [https://docs.python.org/3/library/stdtypes.html#str]) – An alternate section separator instead of -.

	
has(key)

	This method should return true if the parameter identified by
key is present in this configuration source. It is up to
each configuration source to define the semantics of what
exactly “is present” means, but a guideline is that only real
values should count as being present. If you only have some
sort of placeholder or typing information for key this
should probably not return True.

Note that it is possible that a configuration source would
return True for typed(some_key) and at the same time
return False for has(some_key), if the source only carries
typing information, not real values.

	
get(key)

	Should return the actual value of the parameter identified by
key. If has(some_key) returns True, get(some_key)
should always succeed. If the configuration source does not
include intrinsic typing information (ie. everything looks
like a string) this method should return the string as-is,
LayeredConfig is responsible for converting it to the correct
type.

	
set(key, val)

	Should set the parameter identified by key to the new value
value.

This method should be prepared for any type of value, ie ints,
lists, dates, bools… If the backend cannot handle the given
type, it should convert to a str itself.

Note that this does not mean that the changes should be
persisted in the backend data, only in the existing objects
view of the data (only when save() is called, the
changes should be persisted).

	
typed(key)

	Should return True if this source contains typing information for
key, ie information about which data type this parameter
should be.

For sources where everything is stored as a string, this
should generally return False (no way of distinguishing an
actual string from a date formatted as a string).

	
subsections()

	Should return a list (or other iterator) of subsection keys, ie
names that represent subsections of this configuration
source. Not all configuration sources need to support
subsections. In that case, this should just return an empty
list.

	
subsection(key)

	Should return the subsection identified by key, in the form of
a new object of the same class, but initialized
differently. Exactly how will depend on the source, but as a
general rule the same resource handle used as self.source
should be passed to the new object. Often, the subsection key
will need to be provided to the new object as well, so that
get() and other methods can use it to look in the
correct place.

As a general rule, the constructor should be called with a
parent parameter set to self.

Command-line parameters

	
class layeredconfig.Commandline(commandline=None, parser=None, sectionsep='-', add_help=True, **kwargs)

	Load configuration from command line options. Any long-style
parameters are turned into configuration values, and
parameters containing the section separator (by default
"-") are turned into nested config objects
(i.e. --module-parameter=foo results in
self.module.parameter == "foo".

If an initialized ArgumentParser object is provided, the
defined parameters in that object is used for supporting short
form options (eg. '-f' instead of '--force'), typing
information and help text. The standards argparse feature of
printing a helpful message when the ‘-h’ option is given is
retained.

	Parameters

	
	commandline (list [https://docs.python.org/3/library/stdtypes.html#list]) – Command line arguments, in list form like
sys.argv [https://docs.python.org/3/library/sys.html#sys.argv]. If not provided, uses
the real sys.argv [https://docs.python.org/3/library/sys.html#sys.argv].

	parser (argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) – An initialized/configured argparse object

	sectionsep (str [https://docs.python.org/3/library/stdtypes.html#str]) – An alternate section separator instead of -.

	add_help (bool [https://docs.python.org/3/library/functions.html#bool]) – Same as for ArgumentParser()

	
rest = []

	The remainder of the command line, containing all parameters that
couldn’t be turned into configuration settings.

	
setup(config)

	Perform some post-initialization setup. This method will be called
by the LayeredConfig constructor after its internal initialization is
finished, with itself as argument. Sources may access all properties
of the config object in order to eg. find out which parameters have
been defined.

The sources will be called in the same order as they were
provided to the LayeredConfig constructior, ie. lowest
precedence first.

	Parameters

	config (layeredconfig.LayeredConfig) – The initialized config object that this source is a part of

	
has(key)

	This method should return true if the parameter identified by
key is present in this configuration source. It is up to
each configuration source to define the semantics of what
exactly “is present” means, but a guideline is that only real
values should count as being present. If you only have some
sort of placeholder or typing information for key this
should probably not return True.

Note that it is possible that a configuration source would
return True for typed(some_key) and at the same time
return False for has(some_key), if the source only carries
typing information, not real values.

	
get(key)

	Should return the actual value of the parameter identified by
key. If has(some_key) returns True, get(some_key)
should always succeed. If the configuration source does not
include intrinsic typing information (ie. everything looks
like a string) this method should return the string as-is,
LayeredConfig is responsible for converting it to the correct
type.

	
subsections()

	Should return a list (or other iterator) of subsection keys, ie
names that represent subsections of this configuration
source. Not all configuration sources need to support
subsections. In that case, this should just return an empty
list.

	
subsection(key)

	Should return the subsection identified by key, in the form of
a new object of the same class, but initialized
differently. Exactly how will depend on the source, but as a
general rule the same resource handle used as self.source
should be passed to the new object. Often, the subsection key
will need to be provided to the new object as well, so that
get() and other methods can use it to look in the
correct place.

As a general rule, the constructor should be called with a
parent parameter set to self.

	
set(key, value)

	Should set the parameter identified by key to the new value
value.

This method should be prepared for any type of value, ie ints,
lists, dates, bools… If the backend cannot handle the given
type, it should convert to a str itself.

Note that this does not mean that the changes should be
persisted in the backend data, only in the existing objects
view of the data (only when save() is called, the
changes should be persisted).

	
typed(key)

	Should return True if this source contains typing information for
key, ie information about which data type this parameter
should be.

For sources where everything is stored as a string, this
should generally return False (no way of distinguishing an
actual string from a date formatted as a string).

INI files

	
class layeredconfig.INIFile(inifilename=None, rootsection='__root__', sectionsep='.', writable=True, **kwargs)

	Loads and optionally saves configuration files in INI format, as
handled by configparser [https://docs.python.org/3/library/configparser.html#module-configparser].

	Parameters

	
	inifile (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a ini-style configuration
file. The file should have a top-level
section, by default named __root__, whose
keys are turned into top-level configuration
parameters. Any other sections in this file
are turned into nested config objects.

	rootsection (str [https://docs.python.org/3/library/stdtypes.html#str]) – An alternative name for the top-level section.
See note below.

	sectionsep (str [https://docs.python.org/3/library/stdtypes.html#str]) – separator to use in section names to
separate nested subsections. See note below.

	writable (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether changes to the LayeredConfig object
that has this INIFile object amongst its
sources should be saved in the INI file.

Note

Nested subsections is possible, but since the INI format
does not natively support nesting, this is accomplished
through specially-formatted section names, eg the config
value mymodule.mysection.example would be expressed in the
ini file as:

[mymodule.mysection]
example = value

Since this source uses configparser [https://docs.python.org/3/library/configparser.html#module-configparser], and since
that module handles sections named [DEFAULT]
differently, this module will have a sort-of automatic
cascading feature for subsections if DEFAULT is used as
rootsection

	
typed(key)

	Should return True if this source contains typing information for
key, ie information about which data type this parameter
should be.

For sources where everything is stored as a string, this
should generally return False (no way of distinguishing an
actual string from a date formatted as a string).

	
subsections()

	Should return a list (or other iterator) of subsection keys, ie
names that represent subsections of this configuration
source. Not all configuration sources need to support
subsections. In that case, this should just return an empty
list.

	
subsection(key)

	Should return the subsection identified by key, in the form of
a new object of the same class, but initialized
differently. Exactly how will depend on the source, but as a
general rule the same resource handle used as self.source
should be passed to the new object. Often, the subsection key
will need to be provided to the new object as well, so that
get() and other methods can use it to look in the
correct place.

As a general rule, the constructor should be called with a
parent parameter set to self.

	
has(key)

	This method should return true if the parameter identified by
key is present in this configuration source. It is up to
each configuration source to define the semantics of what
exactly “is present” means, but a guideline is that only real
values should count as being present. If you only have some
sort of placeholder or typing information for key this
should probably not return True.

Note that it is possible that a configuration source would
return True for typed(some_key) and at the same time
return False for has(some_key), if the source only carries
typing information, not real values.

	
get(key)

	Should return the actual value of the parameter identified by
key. If has(some_key) returns True, get(some_key)
should always succeed. If the configuration source does not
include intrinsic typing information (ie. everything looks
like a string) this method should return the string as-is,
LayeredConfig is responsible for converting it to the correct
type.

	
set(key, value)

	Should set the parameter identified by key to the new value
value.

This method should be prepared for any type of value, ie ints,
lists, dates, bools… If the backend cannot handle the given
type, it should convert to a str itself.

Note that this does not mean that the changes should be
persisted in the backend data, only in the existing objects
view of the data (only when save() is called, the
changes should be persisted).

	
save()

	Persist changed data to the backend. This generally means to update
a loaded configuration file with all changed data, or similar.

This method will only ever be called if writable is
True, and only if dirty has been set to True.

If your source is read-only, you don’t have to implement this method.

JSON files

	
class layeredconfig.JSONFile(jsonfilename=None, writable=True, **kwargs)

	Loads and optionally saves configuration files in JSON
format. Since JSON has some support for typed values (supports
numbers, lists, bools, but not dates or datetimes), data from
this source are sometimes typed, sometimes only available as
strings.

	Parameters

	
	jsonfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a JSON file, whose root element
should be a JSON object (python dict). Nested
objects are turned into nested config objects.

	writable (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether changes to the LayeredConfig object
that has this JSONFile object amongst its
sources should be saved in the JSON file.

	
typed(key)

	Should return True if this source contains typing information for
key, ie information about which data type this parameter
should be.

For sources where everything is stored as a string, this
should generally return False (no way of distinguishing an
actual string from a date formatted as a string).

	
set(key, value)

	Should set the parameter identified by key to the new value
value.

This method should be prepared for any type of value, ie ints,
lists, dates, bools… If the backend cannot handle the given
type, it should convert to a str itself.

Note that this does not mean that the changes should be
persisted in the backend data, only in the existing objects
view of the data (only when save() is called, the
changes should be persisted).

	
save()

	Persist changed data to the backend. This generally means to update
a loaded configuration file with all changed data, or similar.

This method will only ever be called if writable is
True, and only if dirty has been set to True.

If your source is read-only, you don’t have to implement this method.

YAML files

	
class layeredconfig.YAMLFile(yamlfilename=None, writable=True, **kwargs)

	Loads and optionally saves configuration files in YAML
format. Since YAML (and the library implementing the support,
PyYAML) has automatic support for typed values, data from this
source are typed.

	Parameters

	
	yamlfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a YAML file. Nested
sections are turned into nested config objects.

	writable (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether changes to the LayeredConfig object
that has this YAMLFile object amongst its
sources should be saved in the YAML file.

	
get(key)

	Should return the actual value of the parameter identified by
key. If has(some_key) returns True, get(some_key)
should always succeed. If the configuration source does not
include intrinsic typing information (ie. everything looks
like a string) this method should return the string as-is,
LayeredConfig is responsible for converting it to the correct
type.

	
save()

	Persist changed data to the backend. This generally means to update
a loaded configuration file with all changed data, or similar.

This method will only ever be called if writable is
True, and only if dirty has been set to True.

If your source is read-only, you don’t have to implement this method.

PList files

	
class layeredconfig.PListFile(plistfilename=None, writable=True, **kwargs)

	Loads and optionally saves configuration files in PList
format. Since PList has some support for typed values (supports
numbers, lists, bools, datetimes but not dates), data from
this source are sometimes typed, sometimes only available as
strings.

	Parameters

	
	plistfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a PList file. Nested sections are
turned into nested config objects.

	writable (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether changes to the LayeredConfig object
that has this PListFile object amongst its
sources should be saved in the PList file.

	
set(key, value)

	Should set the parameter identified by key to the new value
value.

This method should be prepared for any type of value, ie ints,
lists, dates, bools… If the backend cannot handle the given
type, it should convert to a str itself.

Note that this does not mean that the changes should be
persisted in the backend data, only in the existing objects
view of the data (only when save() is called, the
changes should be persisted).

	
get(key)

	Should return the actual value of the parameter identified by
key. If has(some_key) returns True, get(some_key)
should always succeed. If the configuration source does not
include intrinsic typing information (ie. everything looks
like a string) this method should return the string as-is,
LayeredConfig is responsible for converting it to the correct
type.

	
typed(key)

	Should return True if this source contains typing information for
key, ie information about which data type this parameter
should be.

For sources where everything is stored as a string, this
should generally return False (no way of distinguishing an
actual string from a date formatted as a string).

	
subsections()

	Should return a list (or other iterator) of subsection keys, ie
names that represent subsections of this configuration
source. Not all configuration sources need to support
subsections. In that case, this should just return an empty
list.

	
save()

	Persist changed data to the backend. This generally means to update
a loaded configuration file with all changed data, or similar.

This method will only ever be called if writable is
True, and only if dirty has been set to True.

If your source is read-only, you don’t have to implement this method.

Python files

	
class layeredconfig.PyFile(pyfilename=None, **kwargs)

	Loads configuration from a python source file. Any variables
defined in that file will be interpreted as configuration
keys. The class Subsection is automatically imported into
the context when the file is executed, and represents a
subsection of the configuration. Any attribute set on such an
object is treated as a configuration parameter on that
subsection.

Note

The python source file is loaded and interpreted once, when
creating the PyFile object. If a value is set by
eg. calling a function, that function will only be called
at load time, not when accessing the parameter.

	Parameters

	pyfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a file containing valid python code.

	
has(key)

	This method should return true if the parameter identified by
key is present in this configuration source. It is up to
each configuration source to define the semantics of what
exactly “is present” means, but a guideline is that only real
values should count as being present. If you only have some
sort of placeholder or typing information for key this
should probably not return True.

Note that it is possible that a configuration source would
return True for typed(some_key) and at the same time
return False for has(some_key), if the source only carries
typing information, not real values.

	
get(key)

	Should return the actual value of the parameter identified by
key. If has(some_key) returns True, get(some_key)
should always succeed. If the configuration source does not
include intrinsic typing information (ie. everything looks
like a string) this method should return the string as-is,
LayeredConfig is responsible for converting it to the correct
type.

	
subsections()

	Should return a list (or other iterator) of subsection keys, ie
names that represent subsections of this configuration
source. Not all configuration sources need to support
subsections. In that case, this should just return an empty
list.

	
subsection(key)

	Should return the subsection identified by key, in the form of
a new object of the same class, but initialized
differently. Exactly how will depend on the source, but as a
general rule the same resource handle used as self.source
should be passed to the new object. Often, the subsection key
will need to be provided to the new object as well, so that
get() and other methods can use it to look in the
correct place.

As a general rule, the constructor should be called with a
parent parameter set to self.

	
set(key, value)

	Should set the parameter identified by key to the new value
value.

This method should be prepared for any type of value, ie ints,
lists, dates, bools… If the backend cannot handle the given
type, it should convert to a str itself.

Note that this does not mean that the changes should be
persisted in the backend data, only in the existing objects
view of the data (only when save() is called, the
changes should be persisted).

	
typed(key)

	Should return True if this source contains typing information for
key, ie information about which data type this parameter
should be.

For sources where everything is stored as a string, this
should generally return False (no way of distinguishing an
actual string from a date formatted as a string).

etcd stores

	
class layeredconfig.EtcdStore(baseurl='http://127.0.0.1:2379/v2/', **kwargs)

	Loads configuration from a etcd store [https://github.com/coreos/etcd].

	Parameters

	baseurl – The main endpoint of the etcd store

etcd has no concept of typed values, so all data from this
source are returned as strings.

	
has(key)

	This method should return true if the parameter identified by
key is present in this configuration source. It is up to
each configuration source to define the semantics of what
exactly “is present” means, but a guideline is that only real
values should count as being present. If you only have some
sort of placeholder or typing information for key this
should probably not return True.

Note that it is possible that a configuration source would
return True for typed(some_key) and at the same time
return False for has(some_key), if the source only carries
typing information, not real values.

	
get(key)

	Should return the actual value of the parameter identified by
key. If has(some_key) returns True, get(some_key)
should always succeed. If the configuration source does not
include intrinsic typing information (ie. everything looks
like a string) this method should return the string as-is,
LayeredConfig is responsible for converting it to the correct
type.

	
typed(key)

	Should return True if this source contains typing information for
key, ie information about which data type this parameter
should be.

For sources where everything is stored as a string, this
should generally return False (no way of distinguishing an
actual string from a date formatted as a string).

	
subsections()

	Should return a list (or other iterator) of subsection keys, ie
names that represent subsections of this configuration
source. Not all configuration sources need to support
subsections. In that case, this should just return an empty
list.

	
subsection(key)

	Should return the subsection identified by key, in the form of
a new object of the same class, but initialized
differently. Exactly how will depend on the source, but as a
general rule the same resource handle used as self.source
should be passed to the new object. Often, the subsection key
will need to be provided to the new object as well, so that
get() and other methods can use it to look in the
correct place.

As a general rule, the constructor should be called with a
parent parameter set to self.

	
set(key=None, value=None)

	Should set the parameter identified by key to the new value
value.

This method should be prepared for any type of value, ie ints,
lists, dates, bools… If the backend cannot handle the given
type, it should convert to a str itself.

Note that this does not mean that the changes should be
persisted in the backend data, only in the existing objects
view of the data (only when save() is called, the
changes should be persisted).

	
save()

	Persist changed data to the backend. This generally means to update
a loaded configuration file with all changed data, or similar.

This method will only ever be called if writable is
True, and only if dirty has been set to True.

If your source is read-only, you don’t have to implement this method.

Implementing custom ConfigSource classes

If you want to get configuration settings from some other sources than
the built-in sources, you should create a class that derives from
ConfigSource and implement a few
methods.

If your chosen source can expose the settings as a (possibly nested)
dict [https://docs.python.org/3/library/stdtypes.html#dict], it might be easier to derive from
DictSource which already provide
implementations of many methods.

	
class layeredconfig.ConfigSource(**kwargs)

	The constructor of the class should set up needed
resources, such as opening and parsing a configuration file.

It is a good idea to keep whatever connection handles, data
access objects, or other resources needed to retrieve the
settings, as unprocessed as possible. The methods that
actually need the data (has(), get(),
subsection(), subsections() and possibly
typed()) should use those resources directly instead
of reading from cached locally stored copies.

The constructor must call the superclass’ __init__ method with all
remaining keyword arguments, ie. super(MySource,
self).__init__(**kwargs).

	
dirty = False

	For writable sources, whether any parameter value in this source
has been changed so that a call to save() might be needed.

	
identifier = None

	A string identifying this source, primarily used with
LayeredConfig.set().

	
writable = False

	Whether or not this source can accept changed configuration
settings and store them in the same place as the original setting came
from.

	
parent = None

	The parent of this source, if this represents a nested
configuration source, or None

	
source = None

	By convention, this should be your main connection handle, data
access object, or other resource neededed to retrieve the
settings.

	
has(key)

	This method should return true if the parameter identified by
key is present in this configuration source. It is up to
each configuration source to define the semantics of what
exactly “is present” means, but a guideline is that only real
values should count as being present. If you only have some
sort of placeholder or typing information for key this
should probably not return True.

Note that it is possible that a configuration source would
return True for typed(some_key) and at the same time
return False for has(some_key), if the source only carries
typing information, not real values.

	
get(key)

	Should return the actual value of the parameter identified by
key. If has(some_key) returns True, get(some_key)
should always succeed. If the configuration source does not
include intrinsic typing information (ie. everything looks
like a string) this method should return the string as-is,
LayeredConfig is responsible for converting it to the correct
type.

	
keys()

	

	
typed(key)

	Should return True if this source contains typing information for
key, ie information about which data type this parameter
should be.

For sources where everything is stored as a string, this
should generally return False (no way of distinguishing an
actual string from a date formatted as a string).

	
subsections()

	Should return a list (or other iterator) of subsection keys, ie
names that represent subsections of this configuration
source. Not all configuration sources need to support
subsections. In that case, this should just return an empty
list.

	
subsection(key)

	Should return the subsection identified by key, in the form of
a new object of the same class, but initialized
differently. Exactly how will depend on the source, but as a
general rule the same resource handle used as self.source
should be passed to the new object. Often, the subsection key
will need to be provided to the new object as well, so that
get() and other methods can use it to look in the
correct place.

As a general rule, the constructor should be called with a
parent parameter set to self.

	
set(key, value)

	Should set the parameter identified by key to the new value
value.

This method should be prepared for any type of value, ie ints,
lists, dates, bools… If the backend cannot handle the given
type, it should convert to a str itself.

Note that this does not mean that the changes should be
persisted in the backend data, only in the existing objects
view of the data (only when save() is called, the
changes should be persisted).

	
setup(config)

	Perform some post-initialization setup. This method will be called
by the LayeredConfig constructor after its internal initialization is
finished, with itself as argument. Sources may access all properties
of the config object in order to eg. find out which parameters have
been defined.

The sources will be called in the same order as they were
provided to the LayeredConfig constructior, ie. lowest
precedence first.

	Parameters

	config (layeredconfig.LayeredConfig) – The initialized config object that this source is a part of

	
save()

	Persist changed data to the backend. This generally means to update
a loaded configuration file with all changed data, or similar.

This method will only ever be called if writable is
True, and only if dirty has been set to True.

If your source is read-only, you don’t have to implement this method.

	
typevalue(key, value)

	Given a parameter identified by key and an untyped string,
convert that string to the type that our version of key has.

	
class layeredconfig.DictSource(**kwargs)

	If your backend data is exposable as a python dict, you can
subclass from this class to avoid implementing has(),
get(), keys(), subsection() and
subsections(). You only need to write
__init__() (which should set self.source to that
exposed dict), and possibly typed() and
save().

	
subsections()

	Should return a list (or other iterator) of subsection keys, ie
names that represent subsections of this configuration
source. Not all configuration sources need to support
subsections. In that case, this should just return an empty
list.

	
subsection(key)

	Should return the subsection identified by key, in the form of
a new object of the same class, but initialized
differently. Exactly how will depend on the source, but as a
general rule the same resource handle used as self.source
should be passed to the new object. Often, the subsection key
will need to be provided to the new object as well, so that
get() and other methods can use it to look in the
correct place.

As a general rule, the constructor should be called with a
parent parameter set to self.

	
typed(key)

	Should return True if this source contains typing information for
key, ie information about which data type this parameter
should be.

For sources where everything is stored as a string, this
should generally return False (no way of distinguishing an
actual string from a date formatted as a string).

	
has(key)

	This method should return true if the parameter identified by
key is present in this configuration source. It is up to
each configuration source to define the semantics of what
exactly “is present” means, but a guideline is that only real
values should count as being present. If you only have some
sort of placeholder or typing information for key this
should probably not return True.

Note that it is possible that a configuration source would
return True for typed(some_key) and at the same time
return False for has(some_key), if the source only carries
typing information, not real values.

	
get(key)

	Should return the actual value of the parameter identified by
key. If has(some_key) returns True, get(some_key)
should always succeed. If the configuration source does not
include intrinsic typing information (ie. everything looks
like a string) this method should return the string as-is,
LayeredConfig is responsible for converting it to the correct
type.

	
set(key, value)

	Should set the parameter identified by key to the new value
value.

This method should be prepared for any type of value, ie ints,
lists, dates, bools… If the backend cannot handle the given
type, it should convert to a str itself.

Note that this does not mean that the changes should be
persisted in the backend data, only in the existing objects
view of the data (only when save() is called, the
changes should be persisted).

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 layeredconfig	

 	
 	
 layeredconfig.commandline	

 	
 	
 layeredconfig.configsource	

 	
 	
 layeredconfig.defaults	

 	
 	
 layeredconfig.dictsource	

 	
 	
 layeredconfig.environment	

 	
 	
 layeredconfig.etcdstore	

 	
 	
 layeredconfig.inifile	

 	
 	
 layeredconfig.jsonfile	

 	
 	
 layeredconfig.layeredconfig	

 	
 	
 layeredconfig.plistfile	

 	
 	
 layeredconfig.pyfile	

 	
 	
 layeredconfig.yamlfile	

Index

 B
 | C
 | D
 | E
 | G
 | H
 | I
 | J
 | K
 | L
 | P
 | R
 | S
 | T
 | W
 | Y

B

 	
 	boolconvert() (layeredconfig.LayeredConfig static method)

 	(layeredconfig.layeredconfig.LayeredConfig static method)

C

 	
 	Commandline (class in layeredconfig)

 	(class in layeredconfig.commandline)

 	
 	ConfigSource (class in layeredconfig)

 	(class in layeredconfig.configsource)

D

 	
 	dateconvert() (layeredconfig.LayeredConfig static method)

 	(layeredconfig.layeredconfig.LayeredConfig static method)

 	datetimeconvert() (layeredconfig.LayeredConfig static method)

 	(layeredconfig.layeredconfig.LayeredConfig static method)

 	Defaults (class in layeredconfig)

 	(class in layeredconfig.defaults)

 	
 	DictSource (class in layeredconfig)

 	(class in layeredconfig.dictsource)

 	dirty (layeredconfig.ConfigSource attribute)

 	(layeredconfig.configsource.ConfigSource attribute)

 	dump() (layeredconfig.LayeredConfig static method)

 	(layeredconfig.layeredconfig.LayeredConfig static method)

E

 	
 	Environment (class in layeredconfig)

 	(class in layeredconfig.environment)

 	
 	EtcdStore (class in layeredconfig)

 	(class in layeredconfig.etcdstore)

G

 	
 	get() (layeredconfig.Commandline method)

 	(layeredconfig.ConfigSource method)

 	(layeredconfig.DictSource method)

 	(layeredconfig.Environment method)

 	(layeredconfig.EtcdStore method)

 	(layeredconfig.INIFile method)

 	(layeredconfig.LayeredConfig static method)

 	(layeredconfig.PListFile method)

 	(layeredconfig.PyFile method)

 	(layeredconfig.YAMLFile method)

 	(layeredconfig.commandline.Commandline method)

 	(layeredconfig.configsource.ConfigSource method)

 	(layeredconfig.dictsource.DictSource method)

 	(layeredconfig.environment.Environment method)

 	(layeredconfig.etcdstore.EtcdStore method)

 	(layeredconfig.inifile.INIFile method)

 	(layeredconfig.layeredconfig.LayeredConfig static method)

 	(layeredconfig.plistfile.PListFile method)

 	(layeredconfig.pyfile.PyFile method)

 	(layeredconfig.yamlfile.YAMLFile method)

H

 	
 	has() (layeredconfig.Commandline method)

 	(layeredconfig.ConfigSource method)

 	(layeredconfig.DictSource method)

 	(layeredconfig.Environment method)

 	(layeredconfig.EtcdStore method)

 	(layeredconfig.INIFile method)

 	(layeredconfig.PyFile method)

 	(layeredconfig.commandline.Commandline method)

 	(layeredconfig.configsource.ConfigSource method)

 	(layeredconfig.dictsource.DictSource method)

 	(layeredconfig.environment.Environment method)

 	(layeredconfig.etcdstore.EtcdStore method)

 	(layeredconfig.inifile.INIFile method)

 	(layeredconfig.pyfile.PyFile method)

I

 	
 	identifier (layeredconfig.ConfigSource attribute)

 	(layeredconfig.configsource.ConfigSource attribute)

 	
 	INIFile (class in layeredconfig)

 	(class in layeredconfig.inifile)

J

 	
 	JSONFile (class in layeredconfig)

 	(class in layeredconfig.jsonfile)

K

 	
 	keys() (layeredconfig.commandline.Commandline method)

 	(layeredconfig.ConfigSource method)

 	(layeredconfig.configsource.ConfigSource method)

 	(layeredconfig.dictsource.DictSource method)

 	(layeredconfig.environment.Environment method)

 	(layeredconfig.etcdstore.EtcdStore method)

 	(layeredconfig.inifile.INIFile method)

 	(layeredconfig.plistfile.PListFile method)

 	(layeredconfig.pyfile.PyFile method)

L

 	
 	LayeredConfig (class in layeredconfig)

 	(class in layeredconfig.layeredconfig)

 	layeredconfig (module)

 	layeredconfig.commandline (module)

 	layeredconfig.configsource (module)

 	layeredconfig.defaults (module)

 	layeredconfig.dictsource (module)

 	
 	layeredconfig.environment (module)

 	layeredconfig.etcdstore (module)

 	layeredconfig.inifile (module)

 	layeredconfig.jsonfile (module)

 	layeredconfig.layeredconfig (module)

 	layeredconfig.plistfile (module)

 	layeredconfig.pyfile (module)

 	layeredconfig.yamlfile (module)

P

 	
 	parent (layeredconfig.ConfigSource attribute)

 	(layeredconfig.configsource.ConfigSource attribute)

 	PListFile (class in layeredconfig)

 	(class in layeredconfig.plistfile)

 	
 	PyFile (class in layeredconfig)

 	(class in layeredconfig.pyfile)

R

 	
 	rest (layeredconfig.Commandline attribute)

 	(layeredconfig.commandline.Commandline attribute)

S

 	
 	save() (layeredconfig.ConfigSource method)

 	(layeredconfig.EtcdStore method)

 	(layeredconfig.INIFile method)

 	(layeredconfig.JSONFile method)

 	(layeredconfig.PListFile method)

 	(layeredconfig.YAMLFile method)

 	(layeredconfig.configsource.ConfigSource method)

 	(layeredconfig.etcdstore.EtcdStore method)

 	(layeredconfig.inifile.INIFile method)

 	(layeredconfig.jsonfile.JSONFile method)

 	(layeredconfig.plistfile.PListFile method)

 	(layeredconfig.yamlfile.YAMLFile method)

 	set() (layeredconfig.Commandline method)

 	(layeredconfig.ConfigSource method)

 	(layeredconfig.DictSource method)

 	(layeredconfig.Environment method)

 	(layeredconfig.EtcdStore method)

 	(layeredconfig.INIFile method)

 	(layeredconfig.JSONFile method)

 	(layeredconfig.LayeredConfig static method)

 	(layeredconfig.PListFile method)

 	(layeredconfig.PyFile method)

 	(layeredconfig.commandline.Commandline method)

 	(layeredconfig.configsource.ConfigSource method)

 	(layeredconfig.dictsource.DictSource method)

 	(layeredconfig.environment.Environment method)

 	(layeredconfig.etcdstore.EtcdStore method)

 	(layeredconfig.inifile.INIFile method)

 	(layeredconfig.jsonfile.JSONFile method)

 	(layeredconfig.layeredconfig.LayeredConfig static method)

 	(layeredconfig.plistfile.PListFile method)

 	(layeredconfig.pyfile.PyFile method)

 	setup() (layeredconfig.Commandline method)

 	(layeredconfig.ConfigSource method)

 	(layeredconfig.commandline.Commandline method)

 	(layeredconfig.configsource.ConfigSource method)

 	
 	source (layeredconfig.ConfigSource attribute)

 	(layeredconfig.configsource.ConfigSource attribute)

 	Subsection (class in layeredconfig.pyfile)

 	subsection() (layeredconfig.Commandline method)

 	(layeredconfig.ConfigSource method)

 	(layeredconfig.DictSource method)

 	(layeredconfig.Environment method)

 	(layeredconfig.EtcdStore method)

 	(layeredconfig.INIFile method)

 	(layeredconfig.PyFile method)

 	(layeredconfig.commandline.Commandline method)

 	(layeredconfig.configsource.ConfigSource method)

 	(layeredconfig.dictsource.DictSource method)

 	(layeredconfig.environment.Environment method)

 	(layeredconfig.etcdstore.EtcdStore method)

 	(layeredconfig.inifile.INIFile method)

 	(layeredconfig.pyfile.PyFile method)

 	subsections() (layeredconfig.Commandline method)

 	(layeredconfig.ConfigSource method)

 	(layeredconfig.DictSource method)

 	(layeredconfig.Environment method)

 	(layeredconfig.EtcdStore method)

 	(layeredconfig.INIFile method)

 	(layeredconfig.PListFile method)

 	(layeredconfig.PyFile method)

 	(layeredconfig.commandline.Commandline method)

 	(layeredconfig.configsource.ConfigSource method)

 	(layeredconfig.dictsource.DictSource method)

 	(layeredconfig.environment.Environment method)

 	(layeredconfig.etcdstore.EtcdStore method)

 	(layeredconfig.inifile.INIFile method)

 	(layeredconfig.plistfile.PListFile method)

 	(layeredconfig.pyfile.PyFile method)

T

 	
 	typed() (layeredconfig.Commandline method)

 	(layeredconfig.ConfigSource method)

 	(layeredconfig.DictSource method)

 	(layeredconfig.Environment method)

 	(layeredconfig.EtcdStore method)

 	(layeredconfig.INIFile method)

 	(layeredconfig.JSONFile method)

 	(layeredconfig.PListFile method)

 	(layeredconfig.PyFile method)

 	(layeredconfig.commandline.Commandline method)

 	(layeredconfig.configsource.ConfigSource method)

 	(layeredconfig.dictsource.DictSource method)

 	(layeredconfig.environment.Environment method)

 	(layeredconfig.etcdstore.EtcdStore method)

 	(layeredconfig.inifile.INIFile method)

 	(layeredconfig.jsonfile.JSONFile method)

 	(layeredconfig.plistfile.PListFile method)

 	(layeredconfig.pyfile.PyFile method)

 	
 	typevalue() (layeredconfig.ConfigSource method)

 	(layeredconfig.configsource.ConfigSource method)

W

 	
 	writable (layeredconfig.ConfigSource attribute)

 	(layeredconfig.configsource.ConfigSource attribute)

 	
 	write() (layeredconfig.LayeredConfig static method)

 	(layeredconfig.layeredconfig.LayeredConfig static method)

Y

 	
 	YAMLFile (class in layeredconfig)

 	(class in layeredconfig.yamlfile)

Internal notes on how to do a release

$ git checkout -b release/0.1.0
update version info in layeredconfig/__init__.py
$ git commit -am “Final release prep”
push changes so that travis-ci/appveyor can test the bits to be released
$ git push –set-upstream origin release/0.1.0
tag release and push to github, to make this tree be a “release”
$ git tag -a “v0.1.0” -m “Initial release”
$ git push –tags # makes the release show up in Github
register a new version on pypi and upload it
$ python setup.py register
$ python setup.py sdist
$ python setup.py bdist_wheel –universal
$ twine upload dist/layeredconfig-0.1.0.tar.gz dist/layeredconfig-0.1.0-py2.py3-none-any.whl
start the next cycle
$ git checkout master
$ git merge release/0.1.0
update layeredconfig/__init__.py to eg version=0.1.1.dev1 and ideally also appveyor.yml
$ git commit -m “start of next iteration” layeredconfig/__init__.py
$ git push

layeredconfig package

Submodules

layeredconfig.commandline module

	
class layeredconfig.commandline.Commandline(commandline=None, parser=None, sectionsep='-', add_help=True, **kwargs)

	Bases: layeredconfig.configsource.ConfigSource

Load configuration from command line options. Any long-style
parameters are turned into configuration values, and
parameters containing the section separator (by default
"-") are turned into nested config objects
(i.e. --module-parameter=foo results in
self.module.parameter == "foo".

If an initialized ArgumentParser object is provided, the
defined parameters in that object is used for supporting short
form options (eg. '-f' instead of '--force'), typing
information and help text. The standards argparse feature of
printing a helpful message when the ‘-h’ option is given is
retained.

	Parameters

	
	commandline (list [https://docs.python.org/3/library/stdtypes.html#list]) – Command line arguments, in list form like
sys.argv [https://docs.python.org/3/library/sys.html#sys.argv]. If not provided, uses
the real sys.argv [https://docs.python.org/3/library/sys.html#sys.argv].

	parser (argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) – An initialized/configured argparse object

	sectionsep (str [https://docs.python.org/3/library/stdtypes.html#str]) – An alternate section separator instead of -.

	add_help (bool [https://docs.python.org/3/library/functions.html#bool]) – Same as for ArgumentParser()

	
get(key)

	Should return the actual value of the parameter identified by
key. If has(some_key) returns True, get(some_key)
should always succeed. If the configuration source does not
include intrinsic typing information (ie. everything looks
like a string) this method should return the string as-is,
LayeredConfig is responsible for converting it to the correct
type.

	
has(key)

	This method should return true if the parameter identified by
key is present in this configuration source. It is up to
each configuration source to define the semantics of what
exactly “is present” means, but a guideline is that only real
values should count as being present. If you only have some
sort of placeholder or typing information for key this
should probably not return True.

Note that it is possible that a configuration source would
return True for typed(some_key) and at the same time
return False for has(some_key), if the source only carries
typing information, not real values.

	
keys()

	

	
rest = []

	The remainder of the command line, containing all parameters that
couldn’t be turned into configuration settings.

	
set(key, value)

	Should set the parameter identified by key to the new value
value.

This method should be prepared for any type of value, ie ints,
lists, dates, bools… If the backend cannot handle the given
type, it should convert to a str itself.

Note that this does not mean that the changes should be
persisted in the backend data, only in the existing objects
view of the data (only when save() is called, the
changes should be persisted).

	
setup(config)

	Perform some post-initialization setup. This method will be called
by the LayeredConfig constructor after its internal initialization is
finished, with itself as argument. Sources may access all properties
of the config object in order to eg. find out which parameters have
been defined.

The sources will be called in the same order as they were
provided to the LayeredConfig constructior, ie. lowest
precedence first.

	Parameters

	config (layeredconfig.LayeredConfig) – The initialized config object that this source is a part of

	
subsection(key)

	Should return the subsection identified by key, in the form of
a new object of the same class, but initialized
differently. Exactly how will depend on the source, but as a
general rule the same resource handle used as self.source
should be passed to the new object. Often, the subsection key
will need to be provided to the new object as well, so that
get() and other methods can use it to look in the
correct place.

As a general rule, the constructor should be called with a
parent parameter set to self.

	
subsections()

	Should return a list (or other iterator) of subsection keys, ie
names that represent subsections of this configuration
source. Not all configuration sources need to support
subsections. In that case, this should just return an empty
list.

	
typed(key)

	Should return True if this source contains typing information for
key, ie information about which data type this parameter
should be.

For sources where everything is stored as a string, this
should generally return False (no way of distinguishing an
actual string from a date formatted as a string).

layeredconfig.configsource module

	
class layeredconfig.configsource.ConfigSource(**kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The constructor of the class should set up needed
resources, such as opening and parsing a configuration file.

It is a good idea to keep whatever connection handles, data
access objects, or other resources needed to retrieve the
settings, as unprocessed as possible. The methods that
actually need the data (has(), get(),
subsection(), subsections() and possibly
typed()) should use those resources directly instead
of reading from cached locally stored copies.

The constructor must call the superclass’ __init__ method with all
remaining keyword arguments, ie. super(MySource,
self).__init__(**kwargs).

	
dirty = False

	For writable sources, whether any parameter value in this source
has been changed so that a call to save() might be needed.

	
get(key)

	Should return the actual value of the parameter identified by
key. If has(some_key) returns True, get(some_key)
should always succeed. If the configuration source does not
include intrinsic typing information (ie. everything looks
like a string) this method should return the string as-is,
LayeredConfig is responsible for converting it to the correct
type.

	
has(key)

	This method should return true if the parameter identified by
key is present in this configuration source. It is up to
each configuration source to define the semantics of what
exactly “is present” means, but a guideline is that only real
values should count as being present. If you only have some
sort of placeholder or typing information for key this
should probably not return True.

Note that it is possible that a configuration source would
return True for typed(some_key) and at the same time
return False for has(some_key), if the source only carries
typing information, not real values.

	
identifier = None

	A string identifying this source, primarily used with
LayeredConfig.set().

	
keys()

	

	
parent = None

	The parent of this source, if this represents a nested
configuration source, or None

	
save()

	Persist changed data to the backend. This generally means to update
a loaded configuration file with all changed data, or similar.

This method will only ever be called if writable is
True, and only if dirty has been set to True.

If your source is read-only, you don’t have to implement this method.

	
set(key, value)

	Should set the parameter identified by key to the new value
value.

This method should be prepared for any type of value, ie ints,
lists, dates, bools… If the backend cannot handle the given
type, it should convert to a str itself.

Note that this does not mean that the changes should be
persisted in the backend data, only in the existing objects
view of the data (only when save() is called, the
changes should be persisted).

	
setup(config)

	Perform some post-initialization setup. This method will be called
by the LayeredConfig constructor after its internal initialization is
finished, with itself as argument. Sources may access all properties
of the config object in order to eg. find out which parameters have
been defined.

The sources will be called in the same order as they were
provided to the LayeredConfig constructior, ie. lowest
precedence first.

	Parameters

	config (layeredconfig.LayeredConfig) – The initialized config object that this source is a part of

	
source = None

	By convention, this should be your main connection handle, data
access object, or other resource neededed to retrieve the
settings.

	
subsection(key)

	Should return the subsection identified by key, in the form of
a new object of the same class, but initialized
differently. Exactly how will depend on the source, but as a
general rule the same resource handle used as self.source
should be passed to the new object. Often, the subsection key
will need to be provided to the new object as well, so that
get() and other methods can use it to look in the
correct place.

As a general rule, the constructor should be called with a
parent parameter set to self.

	
subsections()

	Should return a list (or other iterator) of subsection keys, ie
names that represent subsections of this configuration
source. Not all configuration sources need to support
subsections. In that case, this should just return an empty
list.

	
typed(key)

	Should return True if this source contains typing information for
key, ie information about which data type this parameter
should be.

For sources where everything is stored as a string, this
should generally return False (no way of distinguishing an
actual string from a date formatted as a string).

	
typevalue(key, value)

	Given a parameter identified by key and an untyped string,
convert that string to the type that our version of key has.

	
writable = False

	Whether or not this source can accept changed configuration
settings and store them in the same place as the original setting came
from.

layeredconfig.defaults module

	
class layeredconfig.defaults.Defaults(defaults=None, **kwargs)

	Bases: layeredconfig.dictsource.DictSource

This source is initialized with a dict.

	Parameters

	defaults (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dict with configuration keys and values. If
any values are dicts, these are turned into
nested config objects.

layeredconfig.dictsource module

	
class layeredconfig.dictsource.DictSource(**kwargs)

	Bases: layeredconfig.configsource.ConfigSource

If your backend data is exposable as a python dict, you can
subclass from this class to avoid implementing has(),
get(), keys(), subsection() and
subsections(). You only need to write
__init__() (which should set self.source to that
exposed dict), and possibly typed() and
save().

	
get(key)

	Should return the actual value of the parameter identified by
key. If has(some_key) returns True, get(some_key)
should always succeed. If the configuration source does not
include intrinsic typing information (ie. everything looks
like a string) this method should return the string as-is,
LayeredConfig is responsible for converting it to the correct
type.

	
has(key)

	This method should return true if the parameter identified by
key is present in this configuration source. It is up to
each configuration source to define the semantics of what
exactly “is present” means, but a guideline is that only real
values should count as being present. If you only have some
sort of placeholder or typing information for key this
should probably not return True.

Note that it is possible that a configuration source would
return True for typed(some_key) and at the same time
return False for has(some_key), if the source only carries
typing information, not real values.

	
keys()

	

	
set(key, value)

	Should set the parameter identified by key to the new value
value.

This method should be prepared for any type of value, ie ints,
lists, dates, bools… If the backend cannot handle the given
type, it should convert to a str itself.

Note that this does not mean that the changes should be
persisted in the backend data, only in the existing objects
view of the data (only when save() is called, the
changes should be persisted).

	
subsection(key)

	Should return the subsection identified by key, in the form of
a new object of the same class, but initialized
differently. Exactly how will depend on the source, but as a
general rule the same resource handle used as self.source
should be passed to the new object. Often, the subsection key
will need to be provided to the new object as well, so that
get() and other methods can use it to look in the
correct place.

As a general rule, the constructor should be called with a
parent parameter set to self.

	
subsections()

	Should return a list (or other iterator) of subsection keys, ie
names that represent subsections of this configuration
source. Not all configuration sources need to support
subsections. In that case, this should just return an empty
list.

	
typed(key)

	Should return True if this source contains typing information for
key, ie information about which data type this parameter
should be.

For sources where everything is stored as a string, this
should generally return False (no way of distinguishing an
actual string from a date formatted as a string).

layeredconfig.environment module

	
class layeredconfig.environment.Environment(environ=None, prefix=None, lower=True, sectionsep='_', **kwargs)

	Bases: layeredconfig.configsource.ConfigSource

Loads settings from environment variables. If prefix is set to
MYAPP_, the value of the environment variable MYAPP_HOME
will be available as the configuration setting home.

	Parameters

	
	environ (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables, in dict form like
os.environ [https://docs.python.org/3/library/os.html#os.environ]. If not provided, uses
the real os.environ [https://docs.python.org/3/library/os.html#os.environ].

	prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – Since the entire environment is not suitable to use
as a configuration, only variables starting with this
prefix are used.

	lower (True) – If true, lowercase the name of environment
variables (since these typically uses uppercase)

	sectionsep (str [https://docs.python.org/3/library/stdtypes.html#str]) – An alternate section separator instead of -.

	
get(key)

	Should return the actual value of the parameter identified by
key. If has(some_key) returns True, get(some_key)
should always succeed. If the configuration source does not
include intrinsic typing information (ie. everything looks
like a string) this method should return the string as-is,
LayeredConfig is responsible for converting it to the correct
type.

	
has(key)

	This method should return true if the parameter identified by
key is present in this configuration source. It is up to
each configuration source to define the semantics of what
exactly “is present” means, but a guideline is that only real
values should count as being present. If you only have some
sort of placeholder or typing information for key this
should probably not return True.

Note that it is possible that a configuration source would
return True for typed(some_key) and at the same time
return False for has(some_key), if the source only carries
typing information, not real values.

	
keys()

	

	
set(key, val)

	Should set the parameter identified by key to the new value
value.

This method should be prepared for any type of value, ie ints,
lists, dates, bools… If the backend cannot handle the given
type, it should convert to a str itself.

Note that this does not mean that the changes should be
persisted in the backend data, only in the existing objects
view of the data (only when save() is called, the
changes should be persisted).

	
subsection(key)

	Should return the subsection identified by key, in the form of
a new object of the same class, but initialized
differently. Exactly how will depend on the source, but as a
general rule the same resource handle used as self.source
should be passed to the new object. Often, the subsection key
will need to be provided to the new object as well, so that
get() and other methods can use it to look in the
correct place.

As a general rule, the constructor should be called with a
parent parameter set to self.

	
subsections()

	Should return a list (or other iterator) of subsection keys, ie
names that represent subsections of this configuration
source. Not all configuration sources need to support
subsections. In that case, this should just return an empty
list.

	
typed(key)

	Should return True if this source contains typing information for
key, ie information about which data type this parameter
should be.

For sources where everything is stored as a string, this
should generally return False (no way of distinguishing an
actual string from a date formatted as a string).

layeredconfig.etcdstore module

	
class layeredconfig.etcdstore.EtcdStore(baseurl='http://127.0.0.1:2379/v2/', **kwargs)

	Bases: layeredconfig.configsource.ConfigSource

Loads configuration from a etcd store [https://github.com/coreos/etcd].

	Parameters

	baseurl – The main endpoint of the etcd store

etcd has no concept of typed values, so all data from this
source are returned as strings.

	
get(key)

	Should return the actual value of the parameter identified by
key. If has(some_key) returns True, get(some_key)
should always succeed. If the configuration source does not
include intrinsic typing information (ie. everything looks
like a string) this method should return the string as-is,
LayeredConfig is responsible for converting it to the correct
type.

	
has(key)

	This method should return true if the parameter identified by
key is present in this configuration source. It is up to
each configuration source to define the semantics of what
exactly “is present” means, but a guideline is that only real
values should count as being present. If you only have some
sort of placeholder or typing information for key this
should probably not return True.

Note that it is possible that a configuration source would
return True for typed(some_key) and at the same time
return False for has(some_key), if the source only carries
typing information, not real values.

	
keys()

	

	
save()

	Persist changed data to the backend. This generally means to update
a loaded configuration file with all changed data, or similar.

This method will only ever be called if writable is
True, and only if dirty has been set to True.

If your source is read-only, you don’t have to implement this method.

	
set(key=None, value=None)

	Should set the parameter identified by key to the new value
value.

This method should be prepared for any type of value, ie ints,
lists, dates, bools… If the backend cannot handle the given
type, it should convert to a str itself.

Note that this does not mean that the changes should be
persisted in the backend data, only in the existing objects
view of the data (only when save() is called, the
changes should be persisted).

	
subsection(key)

	Should return the subsection identified by key, in the form of
a new object of the same class, but initialized
differently. Exactly how will depend on the source, but as a
general rule the same resource handle used as self.source
should be passed to the new object. Often, the subsection key
will need to be provided to the new object as well, so that
get() and other methods can use it to look in the
correct place.

As a general rule, the constructor should be called with a
parent parameter set to self.

	
subsections()

	Should return a list (or other iterator) of subsection keys, ie
names that represent subsections of this configuration
source. Not all configuration sources need to support
subsections. In that case, this should just return an empty
list.

	
typed(key)

	Should return True if this source contains typing information for
key, ie information about which data type this parameter
should be.

For sources where everything is stored as a string, this
should generally return False (no way of distinguishing an
actual string from a date formatted as a string).

layeredconfig.inifile module

	
class layeredconfig.inifile.INIFile(inifilename=None, rootsection='__root__', sectionsep='.', writable=True, **kwargs)

	Bases: layeredconfig.configsource.ConfigSource

Loads and optionally saves configuration files in INI format, as
handled by configparser [https://docs.python.org/3/library/configparser.html#module-configparser].

	Parameters

	
	inifile (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a ini-style configuration
file. The file should have a top-level
section, by default named __root__, whose
keys are turned into top-level configuration
parameters. Any other sections in this file
are turned into nested config objects.

	rootsection (str [https://docs.python.org/3/library/stdtypes.html#str]) – An alternative name for the top-level section.
See note below.

	sectionsep (str [https://docs.python.org/3/library/stdtypes.html#str]) – separator to use in section names to
separate nested subsections. See note below.

	writable (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether changes to the LayeredConfig object
that has this INIFile object amongst its
sources should be saved in the INI file.

Note

Nested subsections is possible, but since the INI format
does not natively support nesting, this is accomplished
through specially-formatted section names, eg the config
value mymodule.mysection.example would be expressed in the
ini file as:

[mymodule.mysection]
example = value

Since this source uses configparser [https://docs.python.org/3/library/configparser.html#module-configparser], and since
that module handles sections named [DEFAULT]
differently, this module will have a sort-of automatic
cascading feature for subsections if DEFAULT is used as
rootsection

	
get(key)

	Should return the actual value of the parameter identified by
key. If has(some_key) returns True, get(some_key)
should always succeed. If the configuration source does not
include intrinsic typing information (ie. everything looks
like a string) this method should return the string as-is,
LayeredConfig is responsible for converting it to the correct
type.

	
has(key)

	This method should return true if the parameter identified by
key is present in this configuration source. It is up to
each configuration source to define the semantics of what
exactly “is present” means, but a guideline is that only real
values should count as being present. If you only have some
sort of placeholder or typing information for key this
should probably not return True.

Note that it is possible that a configuration source would
return True for typed(some_key) and at the same time
return False for has(some_key), if the source only carries
typing information, not real values.

	
keys()

	

	
save()

	Persist changed data to the backend. This generally means to update
a loaded configuration file with all changed data, or similar.

This method will only ever be called if writable is
True, and only if dirty has been set to True.

If your source is read-only, you don’t have to implement this method.

	
set(key, value)

	Should set the parameter identified by key to the new value
value.

This method should be prepared for any type of value, ie ints,
lists, dates, bools… If the backend cannot handle the given
type, it should convert to a str itself.

Note that this does not mean that the changes should be
persisted in the backend data, only in the existing objects
view of the data (only when save() is called, the
changes should be persisted).

	
subsection(key)

	Should return the subsection identified by key, in the form of
a new object of the same class, but initialized
differently. Exactly how will depend on the source, but as a
general rule the same resource handle used as self.source
should be passed to the new object. Often, the subsection key
will need to be provided to the new object as well, so that
get() and other methods can use it to look in the
correct place.

As a general rule, the constructor should be called with a
parent parameter set to self.

	
subsections()

	Should return a list (or other iterator) of subsection keys, ie
names that represent subsections of this configuration
source. Not all configuration sources need to support
subsections. In that case, this should just return an empty
list.

	
typed(key)

	Should return True if this source contains typing information for
key, ie information about which data type this parameter
should be.

For sources where everything is stored as a string, this
should generally return False (no way of distinguishing an
actual string from a date formatted as a string).

layeredconfig.jsonfile module

	
class layeredconfig.jsonfile.JSONFile(jsonfilename=None, writable=True, **kwargs)

	Bases: layeredconfig.dictsource.DictSource

Loads and optionally saves configuration files in JSON
format. Since JSON has some support for typed values (supports
numbers, lists, bools, but not dates or datetimes), data from
this source are sometimes typed, sometimes only available as
strings.

	Parameters

	
	jsonfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a JSON file, whose root element
should be a JSON object (python dict). Nested
objects are turned into nested config objects.

	writable (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether changes to the LayeredConfig object
that has this JSONFile object amongst its
sources should be saved in the JSON file.

	
save()

	Persist changed data to the backend. This generally means to update
a loaded configuration file with all changed data, or similar.

This method will only ever be called if writable is
True, and only if dirty has been set to True.

If your source is read-only, you don’t have to implement this method.

	
set(key, value)

	Should set the parameter identified by key to the new value
value.

This method should be prepared for any type of value, ie ints,
lists, dates, bools… If the backend cannot handle the given
type, it should convert to a str itself.

Note that this does not mean that the changes should be
persisted in the backend data, only in the existing objects
view of the data (only when save() is called, the
changes should be persisted).

	
typed(key)

	Should return True if this source contains typing information for
key, ie information about which data type this parameter
should be.

For sources where everything is stored as a string, this
should generally return False (no way of distinguishing an
actual string from a date formatted as a string).

layeredconfig.layeredconfig module

	
class layeredconfig.layeredconfig.LayeredConfig(*sources, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Creates a config object from one or more sources and provides
unified access to a nested set of configuration
parameters. The source of these parameters a config file
(using .ini-file style syntax), command line parameters, and
default settings embedded in code. Command line parameters
override configuration file parameters, which in turn override
default settings in code (hence Layered Config).

Configuration parameters are accessed as regular object
attributes, not dict-style key/value pairs. Configuration
parameter names should therefore be regular python
identifiers, and preferrably avoid upper-case and “_” as well
(i.e. only consist of the characters a-z and 0-9)

Configuration parameter values can be typed (strings,
integers, booleans, dates, lists…). Even though some sources
lack typing information (eg in INI files, command-line
parameters and enviroment variables, everything is a string),
LayeredConfig will attempt to find typing information in other
sources and convert data.

	Parameters

	
	*sources – Initialized ConfigSource-derived objects

	cascade (bool [https://docs.python.org/3/library/functions.html#bool]) – If an attempt to get a non-existing parameter
on a sub (nested) configuration object should
attempt to get the parameter on the parent
config object. False by default,

	writable (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether configuration values should be mutable.
True by default. This does not affect
set().

	
static boolconvert(value)

	Convert the string value to a boolean. "True" is converted to
True and "False" is converted to False.

Note

If value is neither “True” nor “False”, it’s returned unchanged.

	
static dateconvert(value)

	Convert the string value to a date [https://docs.python.org/3/library/datetime.html#datetime.date]
object. value is assumed to be on the form “YYYY-MM-DD”.

	
static datetimeconvert(value)

	Convert the string value to a datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]
object. value is assumed to be on the form “YYYY-MM-DD
HH:MM:SS” (optionally ending with fractions of a second).

	
static dump(config)

	Returns the entire content of the config object in a way that can
be easily examined, compared or dumped to a string or file.

	Parameters

	config – The configuration object to dump

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
static get(config, key, default=None)

	Gets a value from the config object, or return a default value if
the parameter does not exist, like dict.get() [https://docs.python.org/3/library/stdtypes.html#dict.get] does.

	
static set(config, key, value, sourceid='defaults')

	Sets a value in this config object without marking any source
dirty, and with exact control of exactly where to set the
value. This is mostly useful for low-level trickery with
config objects.

	Parameters

	
	config – The configuration object to set values on

	key – The parameter name

	value – The new value

	sourceid – The identifier for the underlying source that the
value should be set on.

	
static write(config)

	Commits any pending modifications, ie save a configuration file if
it has been marked “dirty” as a result of an normal
assignment. The modifications are written to the first
writable source in this config object.

Note

This is a static method, ie not a method on any object
instance. This is because all attribute access on a
LayeredConfig object is meant to retrieve configuration
settings.

	Parameters

	config (layeredconfig.LayeredConfig) – The configuration object to save

layeredconfig.plistfile module

	
class layeredconfig.plistfile.PListFile(plistfilename=None, writable=True, **kwargs)

	Bases: layeredconfig.dictsource.DictSource

Loads and optionally saves configuration files in PList
format. Since PList has some support for typed values (supports
numbers, lists, bools, datetimes but not dates), data from
this source are sometimes typed, sometimes only available as
strings.

	Parameters

	
	plistfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a PList file. Nested sections are
turned into nested config objects.

	writable (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether changes to the LayeredConfig object
that has this PListFile object amongst its
sources should be saved in the PList file.

	
get(key)

	Should return the actual value of the parameter identified by
key. If has(some_key) returns True, get(some_key)
should always succeed. If the configuration source does not
include intrinsic typing information (ie. everything looks
like a string) this method should return the string as-is,
LayeredConfig is responsible for converting it to the correct
type.

	
keys()

	

	
save()

	Persist changed data to the backend. This generally means to update
a loaded configuration file with all changed data, or similar.

This method will only ever be called if writable is
True, and only if dirty has been set to True.

If your source is read-only, you don’t have to implement this method.

	
set(key, value)

	Should set the parameter identified by key to the new value
value.

This method should be prepared for any type of value, ie ints,
lists, dates, bools… If the backend cannot handle the given
type, it should convert to a str itself.

Note that this does not mean that the changes should be
persisted in the backend data, only in the existing objects
view of the data (only when save() is called, the
changes should be persisted).

	
subsections()

	Should return a list (or other iterator) of subsection keys, ie
names that represent subsections of this configuration
source. Not all configuration sources need to support
subsections. In that case, this should just return an empty
list.

	
typed(key)

	Should return True if this source contains typing information for
key, ie information about which data type this parameter
should be.

For sources where everything is stored as a string, this
should generally return False (no way of distinguishing an
actual string from a date formatted as a string).

layeredconfig.pyfile module

	
class layeredconfig.pyfile.PyFile(pyfilename=None, **kwargs)

	Bases: layeredconfig.configsource.ConfigSource

Loads configuration from a python source file. Any variables
defined in that file will be interpreted as configuration
keys. The class Subsection is automatically imported into
the context when the file is executed, and represents a
subsection of the configuration. Any attribute set on such an
object is treated as a configuration parameter on that
subsection.

Note

The python source file is loaded and interpreted once, when
creating the PyFile object. If a value is set by
eg. calling a function, that function will only be called
at load time, not when accessing the parameter.

	Parameters

	pyfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a file containing valid python code.

	
get(key)

	Should return the actual value of the parameter identified by
key. If has(some_key) returns True, get(some_key)
should always succeed. If the configuration source does not
include intrinsic typing information (ie. everything looks
like a string) this method should return the string as-is,
LayeredConfig is responsible for converting it to the correct
type.

	
has(key)

	This method should return true if the parameter identified by
key is present in this configuration source. It is up to
each configuration source to define the semantics of what
exactly “is present” means, but a guideline is that only real
values should count as being present. If you only have some
sort of placeholder or typing information for key this
should probably not return True.

Note that it is possible that a configuration source would
return True for typed(some_key) and at the same time
return False for has(some_key), if the source only carries
typing information, not real values.

	
keys()

	

	
set(key, value)

	Should set the parameter identified by key to the new value
value.

This method should be prepared for any type of value, ie ints,
lists, dates, bools… If the backend cannot handle the given
type, it should convert to a str itself.

Note that this does not mean that the changes should be
persisted in the backend data, only in the existing objects
view of the data (only when save() is called, the
changes should be persisted).

	
subsection(key)

	Should return the subsection identified by key, in the form of
a new object of the same class, but initialized
differently. Exactly how will depend on the source, but as a
general rule the same resource handle used as self.source
should be passed to the new object. Often, the subsection key
will need to be provided to the new object as well, so that
get() and other methods can use it to look in the
correct place.

As a general rule, the constructor should be called with a
parent parameter set to self.

	
subsections()

	Should return a list (or other iterator) of subsection keys, ie
names that represent subsections of this configuration
source. Not all configuration sources need to support
subsections. In that case, this should just return an empty
list.

	
typed(key)

	Should return True if this source contains typing information for
key, ie information about which data type this parameter
should be.

For sources where everything is stored as a string, this
should generally return False (no way of distinguishing an
actual string from a date formatted as a string).

	
class layeredconfig.pyfile.Subsection

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict]

layeredconfig.yamlfile module

	
class layeredconfig.yamlfile.YAMLFile(yamlfilename=None, writable=True, **kwargs)

	Bases: layeredconfig.dictsource.DictSource

Loads and optionally saves configuration files in YAML
format. Since YAML (and the library implementing the support,
PyYAML) has automatic support for typed values, data from this
source are typed.

	Parameters

	
	yamlfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a YAML file. Nested
sections are turned into nested config objects.

	writable (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether changes to the LayeredConfig object
that has this YAMLFile object amongst its
sources should be saved in the YAML file.

	
get(key)

	Should return the actual value of the parameter identified by
key. If has(some_key) returns True, get(some_key)
should always succeed. If the configuration source does not
include intrinsic typing information (ie. everything looks
like a string) this method should return the string as-is,
LayeredConfig is responsible for converting it to the correct
type.

	
save()

	Persist changed data to the backend. This generally means to update
a loaded configuration file with all changed data, or similar.

This method will only ever be called if writable is
True, and only if dirty has been set to True.

If your source is read-only, you don’t have to implement this method.

Module contents

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 LayeredConfig

 		
 Introduction

 		
 Usage

 		
 Precedence

 		
 Config sources

 		
 Typing

 		
 Subsections

 		
 Cascading

 		
 Modification and persistance

 		
 Using LayeredConfig with argparse

 		
 Embedding configuration in python files

 		
 API reference

 		
 Available sources

 		
 Hardcoded defaults

 		
 Environment variables

 		
 Command-line parameters

 		
 INI files

 		
 JSON files

 		
 YAML files

 		
 PList files

 		
 Python files

 		
 etcd stores

 		
 Implementing custom ConfigSource classes

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

